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Certain variational problems are considered for a body that slightly dis- 

turbs a supersonic stream. It is found possible in the general case to 

separate the problem for the determination of the drag from the problem 

of the determination of the minimum drag body itself. For the solution of 

the first problem it is sufficient to express the properties of the body 

that are of interest (for example, forces, moments, volume, etc.) in 

terms of the values of the perturbation velocity potential on the charac- 

teristic surfaces enclosing the body. In this work, as an example, rela- 

tions are found connecting the volume of the body with the values of the 

perturbation velocity potential on the characteristic surfaces enclosing 

the body. 

It is shown that the perturbation velocity potential corresponding to 

flow past a body of minimum drag with arbitrary fixed leading and trail- 

ing sections and given volume satisfies, on the rear characteristic sur- 

face, Poisson’s equation with mixed boundary conditions. Axisymmetric 

ducted bodies are found having minimum drag for fixed leading and trailing 

sections and given volume. 

Also considered is the problem of the optimum choice of a fuselage 

having given length and volume with a given wing, and a lower estimate is 

obtained from the drag of the wing-fuselage system. 

The method used in the work is that proposed by Nikol’skii for the 

solution of the problem of determining the contour of the body of revolu- 

tion of minimum drag passing through two given points. We note that this 

method was used in the work [l I to find the drag of the optimum wing 

with a straight trailing edge perpendicular to the free stream, and in 

the work [2 I for the solution of the problem of finding the drag of an 

optimum wing of arbitrary planform. 

1. Formulation of the variational problem in supersonic flow. 
Let the following problem be given: to find the body possessing minimum 
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wave drag at supersonic flight speeds and having certain quantities K,, 

. ..) Kn fixed(by quantities K we understand the overall dimensions of the 

body, its volume, the lift force or moment to which it is subjected, etc.). 

We will solve this problem for linearized flow. 

We find the envelope of all the characteristic surfaces that separate 

the perturbed and unperturbed parts of the flow in the direct and reversed 

streams (the direct stream has a velocity urn in the undisturbed part, and 

the reversed has -&). Obviously these envelopes intersect along some 

line L,. Let the volume enclosed between them be OS and have area S. 

We assume that a solution of the Goursat problem exists for the sur- 

face S (that is, the problem of determining within OS a potential Q satis- 

fying the wave equation with its values $S on S given). Rut then an arbi- 

trary quantity Ki connected with the geometric or force properties of the 

body may be written in the form 

Ki z Bi (up,) (1.1) 

where Bi is a definite integro-differential operator. Consequently the 

variational problem posed above can be formulated as the problem of de- 

termining the potential & corresponding to flow past a body of minimum 

drag under the conditions (1.1) 

(Ki = const). This circumstance 

is important in many cases, as 

it permits the problem of find- 

ing the extremal drag of a body 

to be separated from the problem 

of finding the body itself (which 

is associated with the solution 
X 

A 1 
of Goursat's problem), since 

Fig. 1. 
many of the properties K, (for 

example, forces, moments, volume) 

may be written down immerliately 

on s. ‘Ihs an ordinary equation is found for determining qSS and finding 

the drag of the extremal body. Example: the solution of the Goursat 

problem for the case of axial synunetry (Fig. 1) with 4 = 0 on AB is given 

by the formula 

K (y1, s, 1.) = 
2BrTI (‘/2x, n, k) - (1 - x - Br) F (l/zn, k) 

vx t_ pr - 1 -L 2pq 
(p’ = _W - 1) (1.2 

n=_x-Pr--1+281 
2 + f3r - 1+ 2pq ’ 

k=(z-Br-l +2!3'11)(1----$r) 
(32 + j3r - 1+ 2$q) (I -I + >r) 

Here M is the Mach number in the undisturbed stream, n(1/2~, n, k) is 
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the complete elliptic integral of the third kind and F(l/Zn, k) is the 
complete elliptic integral of the first kind. Thus any variational problem 

may be solved in a stream possessing axial syrmnetry. 

2. Basic relations. We will assume that the body has a cylindrical 

duct whose surface is parallel to U,; the body starts with a plane con- 

tour L, and ends with a plane contour L, (Fig. 2)*. We take an elementary 
contour on the surface S around the point (y, z) and draw through it the 

stream tube to its intersection with the plane P(x = 0). We calculate the 
volume of this stream tube: 

Here dl is the length element of the stream tube, ds is its cross- 
sectional area, dg is the flow of gas across the stream tube, p is the 
density and V is the magnitude of the total velocity. Furthermore, regard- 

ing the perturbations produced by the body as small quantities of order 

c , we have 

1 1 

pv= Pc$a, 1 dl = dx + 0 (c2) P-2) 

d~/d~ is the derivative of the perturbation velocity potential along the 
stream line. Ihen 

(2.3) 

Here x = f (y, z) is the equation of the surface S, 

Yps (Y2 2) = Y lx, Y, z> at J: =/(X,2) (24 

It is not difficult to see that 

dq = p,U, dS cos (nx) - pm 
i 
‘2 -f$ + ‘2%) dS cos (nz) (2.5) 

where n is the outer normal to S. Integrating (2.3) and (2.4) over the 

entire characteristic surface S, we obtain 

* The assumption that the contours L1 and L, are plane is not essential: 
the formula obtained in this section are valid also without this 
assumption. 
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Here Sr, denotes the volume enclosed between the surface of the body 

and the surfaces x = const passing through the contours L,(PL,) and 

L2(PL2), QLL1 is the volume between the cylindrical surface passing through 

the contour L, with its surface parallel to uoo and the planes P and PL1, 

and flLRL2 is thi volume enclosed between the cylindrical 

through the contour L, with its surface parallel to II= 

and PL2. 

surface passing- 

and the planes P 

Fig. 2. 

Applying the momentum law, we obtain for the force R acting on the 
body: 

R=Xi-1 Yj-tZk=-_SS[p(V*~)V+-pn]dS 
s 

(2.7) 

(p being the pressure) or, linearizing 

- jp,U, \\ f$f dS (cm nx) - kp,U,__ \\ ‘2 dS cm (nx) 
s s 

(2.8) 

Applying the equation of continuity to the surface S, we obtain 

ss 
dq = 0 (2.9) 

or linearizing 
S 

_j_ ‘2 g ) ds cos (nx) 
/ 

(2.iO) 

where 2 is the difference in area between the boundary contours L, and 

L,. If an undisturbed stream flows toward the body, then a+/ay = 

a+,/d z = 0 on the forward characteristic surface and the integrations 
in formula:, (2.61, (2.8) and (2.10) extend only over the rear character- 

istic surface. 
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3. Calculation of the drag of the extremal body. We form- 

ulate the variational problem. Let the forward and rear contours L, and 

L, be given, and also their volume, that is Q,. We introduce the forward 

and rear characteristic surfaces through the contours L, and L,. We find 

the distribution of potential on the rear characteristic surface S for 

which the functional for the drag 

attains a minims under the conditions* 

4 = 0 on the line of intersection of the forward and rear characteristic 

surfaces (indices y and z on $ and f indicate differentiation with 
respect to y and z along the surface 5'). This problem is equivalent to 

the determination of the minimum of the functional (3.1) 

1 = \I r I?,; -I- cp,; -!- ~j,~(~~~j~ -i cp,*l,) 3- ~~~f(~~~f~ -L 
8 

i- yl,,f,) - /fhz~2~,,I dy dz 

where A, and h, are constant Lagrange multipliers. The minimum of the 

functional (3.1) is attained for &, satisfying the following conditions 

(Fig. 3): 

Here A is the Laplace operator, 1, is the projection of the line of 

l As it is not difficult to see, the condition that the body passes 

through the given contours L1 and Lz is not included in these condi- 

tions. Such a condition could be formulated in the general cese only 

by knowing the solution of the Goursat problem. In certain cases (for 

example, plane or axisymmetric) it is realized automatically. With 

the realization of the conditions formulated in this section it is 

possible to guarantee that the body passes through either one of the 

contours L1 or Lg. 
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intersection of the forward and rear characteristic surfaces on to a plane 

x = const, and D is the region between the contours L,, and 1,. 

Thus the perturbation velocity potential corresponding to flow past a . - 
body of minimum drag satisfies Poisson's equa- 

tion with mixed boundary conditions on the 

rear characteristic surface.* 

We calculate the values of the multipliers 

AI and$ For this we introduce functions $I 

and $ determined by the conditions 

A$,.=O, A$s=-2p2 inD 

$1 =f, r$s = f2 on 11 

49 wz -=-= 

an an 
0 on L2 

Fig. 3. 

From the determination of the functions $I and I,$ it is evident that 

these functions depend only on /3 and the form of the surface S. Then the 

desired potential can be represented in the form 

‘PO = h (+I- I) -:- i.2 ($2 - f”) 

Formula (2.5), (2.8) and (2.10) for the body of minimum drag can, 

after simple transformations, be brought into the form 

We introduce the symbols 

l Here it is not demonstrated that a &, satisfying the conditions 
enumerated above corresponds to the flow past any real body (that is, 

having everywhere positive thickness). In any case, for & determined 
in this way a lower estimate is obtained for the drag of a real body 

of minimum drag under the conditions formulated at the beginning of 

this section. 

Strictly speaking, also in the works [ I,3 1 lower estimates were 
obtained for the wave drag. 
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Solving equations (3.2) and (3.3) with respect to A, and A,, we obtain 

Al -_= uoa (3.4) 

For the drag X we will have 

2x -c 
?CJ’,2 

Together with the variational problem formulated at the beginning of 

this section, it is also possible to consider a more specialized problem. 

Let. the leading and trailing contours L, and L, be given and the body of 

minimum drag be sought passing through these contours (that is, the volume 

of the body is arbitrary) [3 I. For such a body the minimum drag is 

In particular, if the line of intersection of the forward and rear 

characteristic surfaces lies in a plane 2: = const, then 

GO = -0.51 c (3.6) 

where 1 is the length of the body. This formula permits calculation of 

the volume of the unknown body of minimum drag. 

4. Rody of revolution with cylindrical duct having minimum 
drag. As an example we consider the problem of determining a body of 
revolution with a cylindrical duct possessing minimum external drag. We 

will suppose that the following are 

given (Fig. 4): the volume of the 

body (that is, %zO,, its length I, the 

u 
radii R and R, of the leading and 

2 trailing sections, and the Mach number 

I' 
R, M. Special cases of this problem were 

/ 
/' /' considered in [l, 4-6 1. 

, I , 
-R/p 1 x Henceforth we will neglect the 

Fig. 4. 
quantity /3(R - RI/Z in comparison 

with unity. L lving the equations for 

$1 and $2 (cf. Section 3) and finding 

the values of the potential +,, corresponding to flow past a body of 
minimum drag, we obtain 
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Henceforth, in this section we introduce the dimensionless quantities 

and agree to drop the bars from the symbols. Then, for the potential $, 

we obtain the following expression 

‘po=A, r-R- 
1 

0.5]+&[Reln&-;r2+- 

+2(i+R) r- +(R+ 0.5)(2R+ 5)j 

From equations (3.2) and (3.3) it follows that 

where 
A1 = BC + AQ,, k2 = - AQ, 

A= 
64 

z{(l+4R)(l +4R-8R2)+64RPln[(R +0.5)/R]} 

B= 4 
x(1+4R)’ 

Q2, = -+ + 0.5X 

Finally we have 

cp,=BC [r-R-0.5]- AQ,[R21n&5- (4.11 

- $ r2 + 2 (R + 0.5) r -$ (R + 0.5)2] 

Formula (3.5) permits the calculation of the drag of the extremal body 

which is for the time being still unknown: 

2X 

?lJJWala 
= B C” + 2AQ12 

We turn now to the solution of the Goursat problem. We find a distri- 

bution of sources on the interval (-R, 1 - R) of the x-axis such that 
potential takes the given values on the characteristic BC and is zero 

on AB. For this, advantage is taken of the solution of the wave equation 

known from linearized theory: 

x-r 

P (r, 4 = - & s Q (5) dS 
_-R 1/(X - 4P - r2 

(4.2) 

For the intensity q(c) of the sources we obtain the equation 

P(E) 
v/1+R---e )/1+Rdy2r-[ 

= ‘PO (r) (R’ = 1 + R -2r) (4.3) 

Ihe solution of equation (4.3) is 
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/ R, = R + 0.5 

\E, = 0.5 (1 + R -- 5) 
(4.4) 

On the basis of this formula the potential will be oLtained inside the 

region bounded by the forward and rear characteristic cones that were 

introduced in Section 1. In the case of the body of minimum drag 

Y(E)=2BC V(R+E;)(l fR---5) - (4.5) 

_~- 
-AQr (-1 $- 2~)~/iR--tS)(l-+ R-E) + 4R" arctg R+F 

l+R-_5 1 
In order to determine the shape of the body, formula (2.10) is used 

and applied to the forward contour ABC (Fig. 4). We then have 
r (x) 

C(z) = 2s \ rcp,dr (4.6) 

ii 

where C(x) is the dimensionless area at section x and 4 the value of the 

dimensionless potential on the characteristic BC. 

Integrating formula (4.6) by parts and inserting the value of the 

potential (4.2) we obtain 

x-n 

c(x)=R 1’ v__ 9 (5) dS 
+ 

-R 
(z + li - 4) - ZR (z + R - 4) 

Changing the order of integration in the second integral and again 

integrating by parts, we then have 
x--R 

C (CT) = \ Y'(E) ~/(x-Q2 - R” dE 
-R 

(4.7) 

This last formula has a general character. In particular, if the radius 

of the duct is equal to R = 0, then 

ior & c (2) = Y(S) 

Substituting into Formula (4.7) the value of q'(c) from (4.5) and 

putting the integral so obtained into canonical form, we obtain finally 
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c (5) = 
RC 

21/(zT+2R)(l-z++R) 
[2R\l + 4R) Il((n, k)- 

+$4QJ(z+2R)(l-x+2R) [(Rfx-x2--44R")E(k)- 

-R(l-44X)K(k)] (4.8) 

where K(k), E(k) and lI(n, k) are the complete elliptic integrals of the 

first, second and third kinds with parameters 

x(1 ---2) 

k2 = (x + ZH) (1 -x + 2H) ’ 
x 

n= 
x f 2R 

Formula (4.8) is used also for the calculation of the shape of the 

body of minimum drag passing through the two given radii with arbitrary 

volume. In this case Q1 = 0 [cf. (3.4) and (3.6) 1. 

5. Investigation of a combination of bodies having minimum 
wave drag. Let the characteristic surface S= S, + S, consist of the 

inverse and direct Mach cones having vertices on the x-axis at the points 

x = 0 and x = 1 (Fig. 5). Introducing in the plane x = const polar co- 

ordinates according to y = r cos 0, z = r sin 8 and noticing that 

it is possible to write in the following form the relations for the 

volume and for the area E of the body or system of bodies found inside 

the surface S: 

(5.2) 

'lhe quantity @ we call the average potential. Thus, if the surface S 
consists of two Mach cones, then the volume of the body which is within 

this surface, and also the difference between the area of the entrance 

and exit sections, C, depends only on the value of the average potential 

@ on the surface S. 

Then the formula 

2n 

y==D+A 
(5 

Ad0 = 0) 

0 

for the drag can Le rewritten as 
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Consequently, the expression for the drag X consists of two parts, of 
which one depends only on the quantity Q and the other does not depend on 
this quantity. 

We pose the following problem: let there be given some fixed bodies in 
a supersonic stream of gas, and let it be required to assemble a body of 

Fig. 5. 

given length, area 2 and volume Q,, such that the drag experienced by the 
desired body and those bodies or their parts which are inside the surface 
S is a minimum (the duct, if the desired body contains one, is assumed to 
be circular). Relations (5.11, (5.2) and (5.3) are used for the solution. 

It follows that all integrals over S, can be written down as given, 
‘Ihe problem formulated above is a problem for the determination of the 
minimum of the functional (5.3) under the condition (5.1) and (5.2). Since 
conditions (5.1) and (5.2) depend only on the average potential, and the 
variable part of the expression for the functional X is represented in the 
form of two positive terms, of which one depends on @ and the other does 
not depend on it, it is permissible to seek separately the minima of the 
variable parts: 

We find the minimum of I, under conditions (5.1) and (5.2). We note 
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that by integration by parts, condition (5.1) may be transformed into the 

form: 

Here rO is the radius of the duct. 'lhe function of Lagrange for the 

case considered is 

where A, and A, are as yet undetermined constants. 

'Ihe Euler equation for the functional (5.6) has the form 

From the fact that the second variation of the quantity J, 

is always positive, we conclude that the expression (5.7) gives a minimum 

of the functional J,. ‘Ihe constants A, and A, are found from conditions 

(5.1) and (5.21 anaiogously to Section 3. - 

It is easy to see that, if the problem were solved of determining the 

body of revolution of minimum drag with volume equal to the sum of the 

volumes of all the bodies (of the given ones and so also of the desired 

ones) inside the characteristic surface considered, with area Z% as for 

our body and having a potential on the forward part of the characteristic 

surface equal to the average of the desired potential, then the potential 

for the desired body of revolution on the rear part of the characteristic 

surface would agree with expression (5.7). 

Such a body of revolution we will call an equivalent body of revolu- 

tion. 'Ihe problem of determining a body of revolution possessing minimum 

drag was studied in Section 4. We turn now to the second part of the 

problem. 

That is, we find the minimum of the integral J,. We assume that the 

fixed body is such that its potential is a function having derivatives 

and squares of derivatives that are integrable on S. 'Ihis requirement is 

naturally always realized in practice. 

We take first the case when in the plane y = 0 there is given a wing 

with symmetric profile and combined with it a fuselage symnetrical with 

respect to that plane. 
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Each function +k(i) (il corresponds to a function A, where 

A,(i) z 'p,;(i)-CQ[ci, 

‘k’ 

The potential from the wing on S, may be approximated by the function 

resolved into a Fourier series, so that the integrals 

rdrd0 

sr 

(‘4 corresponds to the 

desired. 

potential, I&, of the fuselage) are as small as 

'Ihe potential of the fuselage satisfies the equation 

(5.8) 

We resolve the quantity @k' on S into a Fourier series. Taking the 
first n terms, we seek &, in the form of a trigonometric polynomial in 8 

of degree n, so that on S, 

(pki’ r - @i (i = 1, . ( IL) 

that is, so that the sum of the corresponding Fourier coefficients for 

+k'. and $ vanishes to order n. 

'Ihe value of n may be chosen so that the integral 

is sufficiently small (Rk,' is 

for the functions +k‘). 

the remainder term of the Fourier series 

Thus it is found that, with 

lage, generally speaking it is 

the aid of a proper selection of the fuse- 

possible with a smetrical wing-fuselage 

combination to obtain a drag differing as little as desired from the drag 

of the equivalent body of revolution by the deduction of the integral of 

the quantity h over S,. At the same time this drag, which we call Xmin, 

is a lower bound for the value of the drag of the combination considered 

in the problem. We note that this lower bound is not attained in all 

cases, since regions necessarily appear with negative thickness. In 

practice, for the reduction of the drag of a wing-fuselage system it is 

necessary to choose n so that such regions do not exist. 

The situation is analogous also for the general case, where the selec- 

tion of an optimum body is associated with the presence of supplementary 
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conditions of no flow through certain surfaces. Thus the following 

theorems are demonstrated. 

Theorem 1. For the conditions of the problem formulated above a body 

may in principle be selected such that the total drag experienced by all 

bodies inside the characteristic surface S differs as little as desired 

from the lower bound Xmi, for the drag of the combination being studied. 

Theorem 2. The distribution of the values of the average potential 

over the part S, of the characteristic surface for the extremal combina- 

tion agrees with the distribution of potential on S, for the equivalent 

body of revolution. 
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